Renaturalising lands as an adaptation strategy. Towards an integrated water-based design approach
DOI:
https://doi.org/10.6093/1970-9870/9074Keywords:
Nature-based solutions, Green and Blue Infrastructure, sustainable urban water management, climate change adaptation, Low Impact DevelopmentAbstract
The effects of soil sealing on the hydrological cycle and water resource exploitation are critical issues for the sustainable development of urbanised areas. Cities’ growth without adequate measures for mitigating anthropic impact has led to deep changes in the hydrological balance regime. In a climate change scenario, the expected increase of rainfall results in hydrogeological and contamination issues, with severe impacts on the fragility of many territories such as small mountain cities. In this framework, Nature-based solutions for sustainable urban water management can help to renaturalise lands, restoring ecosystemic functions. The area of Comano Terme in Trentino offers an opportunity to test an integrated water-based design approach to address the climate crisis. It is a fragile territory with many marginal and disconnected water resources: thermal and mineral springs, and River Sarca, strongly exploited for hydropower production. The increase in rainfall and flow releases from the upstream dam cause floods in urban areas, worsened by soil sealing. This experimental study proposes a multidisciplinary and transcalar approach that combines landscape design and hydraulic constructions to renaturalise the territory with Green and Blue Infrastructure. Sustainable urban drainage devices were integrated into a slow mobility system that reconnects the territory and increases urban resilience.
Downloads
References
Azienda Consorziale Terme di Comano (Ed.). (2019). Il bilancio sociale. Retrieved from: https://www.termecomano.it/ pdf/Terme-di-Comano_Il-Bilancio-Sociale.pdf
Beauchamp, P., & Adamowski, J. (2013). An Integrated Framework for the Development of Green Infrastructure: A Literature Review, European Journal of Sustainable Development, 2 (3), 1-24. https://doi.org/10.14207/ejsd.2013.v2n3p1
Bianchi, C., & Salvati, P. (2021). Rapporto Periodico sul Rischio posto alla Popolazione italiana da Frane e Inondazioni. CNR IRPI. https://doi.org/10.30437/report2020.
Bianconi, F., Clemente, M., Filippucci, M., & Salvati, L. (2018). Regenerating Urban Spaces: A Brief Commentary on Green Infrastructures for Landscape Conservation. TeMA - Journal of Land Use, Mobility and Environment, 11(1), 107–118. https://doi.org/10.6092/1970-9870/5216
Cenedella, A. G. (1847). Nuova analisi chimica dell’acqua termale di Comano. Stamperia di P. Libanti.
Codemo, A., Favargiotti, S., Eccel, E., Gretter, A. (2018). Trento Smart Infrastructures. Green and Blue Infrastructures for Trento. Climate Assessment Report, Italy: EIT Climate-KIC, 60.
Cohen-Shacham, E., G. Walters, C. Janzen, and S. Maginnis. 2016. “Nature-Based Solutions to Address Global Societal Challenges.” Gland, Switzerland: International Union for Conservation of Nature (IUCN). Retrieved from: https://portals.iucn.org/library/sites/library/files/ documents/2016-036.pdf
De Noia, I. (2021). L’acqua come risorsa ed elemento per una progettazione territoriale sostenibile: valorizzazione dell’area di Comano Terme fra paesaggi del benessere e produzione energetica (Unpublished master’s thesis). University of Trento, Trento, Italy.
European Commission (EC). (2000). Directive 2000/60/EC establishing a framework for Community action in the field of water policy, EP, CONSIL, 327 OJ L (2000). Retrieved from: http://data.europa.eu/eli/dir/2000/60/oj/eng
European Commission (EC). 2013. Green infrastructure (GI): enhancing Europe’s natural capital. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Brussels.
European Environment Agency (EEA), Castellari, S., Zandersen, M., Davis, M., Veerkamp, C., Förster, J., Marttunen, M., Mysiak, J., Vandewalle, M., Medri, S., & Picatoste, J. R. (2021). Nature-based solutions in Europe policy, knowledge and practice for climate change adaptation and disaster risk reduction. Publications Office of the European Union. Retrieved from: https://data.europa.eu/doi/10.2800/919315
European Union (EU). (2007). Directive 2007/60/EC of the European Parliament and of the Council of 23 October 2007 on the assessment and management of flood risks, no. 288 (2007). Retrieved from: http://data.europa.eu/ eli/dir/2007/60/oj/eng.
Fletcher, T. D., Shuster, W., Hunt, W. F., Ashley, R., Butler, D., Arthur, S., Trowsdale, S., Barraud, S., Semadeni-Davies, A., Bertrand-Krajewski, J.-L., Mikkelsen, P. S., Rivard, G., Uhl, M., Dagenais, D., & Viklander, M. (2015). SUDS, LID, BMPs, WSUD and more – The evolution and application of terminology surrounding urban drainage. Urban Water Journal, 12 (7), 525–542. https://doi.org/10.1080/1573062X.2014.916314
Frantzeskaki, N. (2019). Seven lessons for planning nature-based solutions in cities. Environmental Science & Policy, 93, 101–111. https://doi.org/10.1016/j.envsci.2018.12.033
Frantzeskaki, N., McPhearson, T., Collier, M.J., Kendal, D., Bulkeley, H., Dumitru, A., Walsh, C., Noble, K., van Wyk, E., Ordóñez, C., Oke, C., & Pintér, L. (2019). Nature-Based Solutions for Urban Climate Change Adaptation: Linking Science, Policy, and Practice Communities for Evidence-Based Decision-Making, BioScience, 69 (6), 455-466. https://doi.org/10.1093/biosci/biz042
Frantzeskaki, N., Mahmoud, I.H., & Morello, E. (2022). Nature-Based Solutions for Resilient and Thriving Cities: Opportunities and Challenges for Planning Future Cities. In: Mahmoud, I.H., Morello, E., Lemes de Oliveira, F., Geneletti, D. (eds) Nature-based Solutions for Sustainable Urban Planning. Contemporary Urban Design Thinking. Springer, Cham. https://doi.org/10.1007/978-3-030-89525-9_1
Gallozzi, P. L., Dessì, B., Iadanza, C., Guarneri, E. M., Marasciulo, T., Miscione, F., Spizzichino, D., Rischia, I., & Trigila, A. (2020). ReNDiS 2020 La difesa del suolo in vent’anni di monitoraggio ISPRA sugli eventi per la mitigazione del rischio idrogeologico (No. 328/20; p. 174). ISPRA. Retrieved from: https://www.isprambiente.gov.it/files2020/ pubblicazioni/rapporti/rendis-2020.pdf
Gerundo, C. (2018). L’adattamento delle città ai cambiamenti climatici. In SHARE Libri. FedOA - Federico II University Press. Retrived from: https://doi.org/10.6093/978-88-6887-031-7
Gibelli, G., Gelmini, A., Pagnoni, E., & Natalucci, F. (2015). GESTIONE SOSTENIBILE DELLE ACQUE URBANE. MANUALE DI DRENAGGIO ‘URBANO’ (Perché, Cosa, Come Regione Lombardia, Ersaf). Retrieved from: https://www.contrattidifiume.it/it/
pubblicazioni/manuali-e-linee-guida/#/
Giswater (2022). Giswater User manual. Retrieved 31 March 2022. Retrieved from https://giswater.gitbook.io/giswater-manual/
Ghofrani, Z., Sposito, V., & Faggian, R. (2017). A Comprehensive Review of Blue-Green Infrastructure Concepts. International Journal of Environment and Sustainability, 6(1). doi: https://doi.org/10.24102/ijes.v6i1.728
Hansen, R., & Pauleit, S. (2014) From multifunctionality to multiple ecosystem services? A con-ceptual framework for multifunctionality in green infrastructure planning for urban areas. AM-BIO: A Journal of the Human Environment. 43 (4), 516-529. https://doi.org/10.1007/s13280-014-0510-2.
Intergovernmental Panel on Climate Change. (2001). Synthesis Report. A Contribution of Working Groups I, II, and III to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
Intergovernmental Panel on Climate Change. (2022). Climate Change 2022: Impacts, Adaptation and Vulnerability (6). Retrieved from: https://www.ipcc.ch/report/ar6/wg2/
Jobstmann, H., Prokop, G., & Schönbauer, A. (2011). Report on best practices for limiting soil sealing and mitigating its effects. Publication office of the European Union. Retrieved from: https://data.europa.eu/doi/10.2779/15146
Lappi, E. (2008). L’epopea dei grandi lavori idroelettrici in Giudicarie nell’archivio fotografico di Dante Ongari. Società degli Alpinisti Tridentini. Retrieved from: https://www.sat.tn.it/wp-content/uploads/2020/08/2008_2_ongari.pdf
Landscape Institute. (2009). Green infrastructure: connected and multifunctional landscapes - position document. Landscape Institute: London, UK.
Maidment, D.R. (1992). Handbook of Hydrology, McGraw-Hill, Inc., New York.
Munafò, M. (Ed.). (2021). Consumo di suolo, dinamiche territoriali e servizi ecosistemici. Edizione 2021—Report di Sistema SNPA 22/21. Retrieved from: https://www.snpambiente.it/2021/07/14/consumo-di-suolo-dinamiche-territoriali-e-servizi-ecosistemici-edizione-2021/
Natural England. (2009). Green Infrastructure Guidance. Natural England: London, UK. Retrieved from: http://publications. naturalengland.org.uk/publication/35033
Pelorosso, R., Gobattoni, F., Lopez, N., & Leone, A. (2013). Verde urbano e processi ambientali: Per una progettazione di paesaggio multifunzionale. TeMA - Journal of Land Use, Mobility and Environment, 6 (1), 95–111. https://doi.org/10.6092/ 1970-9870/1418
Perini, K., & Sabbion, P. (2016). Urban Sustainability and River Restoration: Green and Blue Infrastructure. John Wiley & Sons.
Pimentel, D., Houser, J., Preiss, E., White, O., Fang, H., Mesnick, L., Barsky, T., Tariche, S., Schreck, J., & Alpert, S. (1997). Water Resources: Agriculture, the Environment, and Society. BioScience, 47 (2), 97–106. https://doi.org/10.2307/1313020.
QGIS. (2022). QGIS Desktop 3.22 User Guide. Retrived from: https://docs.qgis.org/3.22/pdf/en/QGIS-3.22-DesktopUserGuide-en.pdf
Qiu, Y., Ichiba, A., Paz, I. D. S. R., Chen, F., Versini, P.-A., Schertzer, D., and Tchiguirinskaia, I.: Evaluation of Low Impact Development and Nature-Based Solutions for stormwater management: a fully distributed modelling approach, Hydrol. Earth Syst. Sci. Discuss. [preprint]. https://doi.org/10.5194/hess-2019-347, 2019.
Rossman, L. A., & Huber, W. C. (2015). Storm Water Management Model Reference Manual. In Hydrology (Vol. 1, p. 233). U.S. EPA Office of Research and Development.
Salata, K. D., & Yiannakou, A. (2016). Green Infrastructure and climate change adaptation. TeMA - Journal of Land Use, Mobility and Environment, 9 (1), 7–24. https://doi.org/10.6092/1970-9870/3723
Salata, K.D., & Yiannakou, A. (2020). The Quest for Adaptation through Spatial Planning and Ecosystem-Based Tools in Resilience Strategies. Sustainability, 12 (14), 5548. https://doi.org/10.3390/su12145548.
Ufficio Dighe della Provincia Autonoma di Trento. (n.d.). Dati Storici. Retrieved 25 January 2021, from https://www.floods.it/public/DatiStorici.php
United Nations (UN). (2019). World UrbanizationProspects: The 2018 Revision. United Nations. Retrieved from: https://population.un.org/wup/Publications/
United States Environmental Protection Agency (EPA), O. (2019, February 13). Storm Water Management Model (SWMM) version 5.1 User’s Manual [Reports and Assessments]. Retrieved from: https://www.epa.gov/water-research/storm-water-management-model-swmm-version-51-users-manual
Venturini, C., Favargiotti, S., Marzadri, A. (2021). Paesaggi performanti: un approccio integrato nature-based per l’area industriale di Vicenza. RETICULA, 28, 130–141. Retrieved from: https://www.isprambiente.gov.it/it/pubblicazioni/periodici-tecnici/reticula/reticula-n-28-2021-numero-monografico.
Voskamp, I. M., & Van de Ven, F. H. M. (2015). Planning support system for climate adaptation: Composing effective sets of blue-green measures to reduce urban vulnerability to extreme weather events. Building and Environment, 83, 159–167. doi: https://doi.org/10.1016/j.buildenv.2014.07.018.
Wu, X., Wang, Z., Guo, S., Liao, W., Zeng, Z., & Chen, X. (2017). Scenario-based projections of future urban inundation within a coupled hydrodynamic model framework: A case study in Dongguan City, China. Journal of Hydrology, 547, 428–442. https://doi.org/10.1016/j.jhydrol.2017.02.020
Yiannakou, A., & Salata, K.D. (2017). Adaptation to Climate Change through Spatial Planning in Compact Urban Areas: A Case Study in the City of Thessaloniki. Sustainability, 9(2), 271. https://doi: 10.3390/su902027.
Zhang, S., & Guo, Y. (2014). SWMM Simulation of the Storm Water Volume Control Performance of Permeable Pavement Systems. Journal of Hydrologic Engineering, 20. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001092
Zheng, Y., Chen, S., Qin, H., & Jiao, J. J. (2018). Modeling the Spatial and Seasonal Variations of Groundwater Head in an Urbanized Area under Low Impact Development. Water, 10(6), 803. https://doi.org/10.3390/w10060803
Zolezzi, G., Gelmini, F., Pellegrini, S., Carolli, M., & Cainelli, O. (2015). Studio ambientale a supporto della redazione del Piano di Gestione delle Reti di Riserve della Sarca (p. 192). Università di Trento. Retrieved from: http://www.parcofluvialesarca.tn.it/pagina.php?id=144
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish in this journal agree to the following:
1. Authors retain the rights to their work and give in to the journal the right of first publication of the work simultaneously licensed under a Creative Commons License - Attribution that allows others to share the work indicating the authorship and the initial publication in this journal.
2. Authors can adhere to other agreements of non-exclusive license for the distribution of the published version of the work (ex. To deposit it in an institutional repository or to publish it in a monography), provided to indicate that the document was first published in this journal.
3. Authors can distribute their work online (ex. In institutional repositories or in their website) prior to and during the submission process, as it can lead to productive exchanges and it can increase the quotations of the published work (See The Effect of Open Access)